Meningeal Melanocytes in the Mouse: Distribution and Dependence on Mitf

نویسندگان

  • Stefán A. H. Gudjohnsen
  • Diahann A. M. Atacho
  • Franck Gesbert
  • Graca Raposo
  • Ilse Hurbain
  • Lionel Larue
  • Eirikur Steingrimsson
  • Petur Henry Petersen
چکیده

SUMMARY Melanocytes are pigment producing cells derived from the neural crest. They are primarily found in the skin and hair follicles, but can also be found in other tissues including the eye, ear and heart. Here, we describe the distribution of pigmented cells in C57BL/6J mouse meninges, the membranes that envelope the brain. These cells contain melanosomes of all four stages of development and they depend on Microphthalmia associated transcription factor (MITF), the master regulator of melanocyte development, suggesting that they are bona-fide melanocytes. The location of these pigmented cells is consistent with the location of meningeal melanomas in humans and animal models. SIGNIFICANCE Here, we document and define pigmented cells in the meninges of the mouse brain and confirm that they are melanocytes. This is important for understanding the role of this cell type and for understanding primary meningeal melanoma, a rare disease that likely arises from normal meningeal melanocytes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Melanocyte development in vivo and in neural crest cell cultures: crucial dependence on the Mitf basic-helix-loop-helix-zipper transcription factor.

The more than 20 different Mitf mutations in the mouse are all associated with deficiencies in neural crest-derived melanocytes that range from minor functional disturbances with some alleles to complete absence of mature melanocytes with others. In the trunk region of wild-type embryos, Mitf-expressing cells that coexpressed the melanoblast marker Dct and the tyrosine kinase receptor Kit were ...

متن کامل

Regional Fluctuation in the Functional Consequence of LINE-1 Insertion in the Mitf Gene: The Black Spotting Phenotype Arisen from the Mitfmi-bw Mouse Lacking Melanocytes

Microphthalmia-associated transcription factor (Mitf) is a key regulator for differentiation of melanoblasts, precursors to melanocytes. The mouse homozygous for the black-eyed white (Mitfmi-bw) allele is characterized by the white-coat color and deafness with black eyes due to the lack of melanocytes. The Mitfmi-bw allele carries LINE-1, a retrotransposable element, which results in the Mitf d...

متن کامل

Elevated expression of MITF counteracts B-RAF–stimulated melanocyte and melanoma cell proliferation

The protein kinase B-RAF is a human oncogene that is mutated in approximately 70% of human melanomas and transforms mouse melanocytes. Microphthalmia-associated transcription factor (MITF) is an important melanocyte differentiation and survival factor, but its role in melanoma is unclear. In this study, we show that MITF expression is suppressed by oncogenic B-RAF in immortalized mouse and prim...

متن کامل

Interplay between MITF, PIAS3, and STAT3 in mast cells and melanocytes.

Microphthalmia transcription factor (MITF) and STAT3 are two transcription factors that play a major role in the regulation of growth and function in mast cells and melanocytes. In the present study, we explored the MITF-PIAS3-STAT3 network of interactions, how these interactions regulate gene expression, and how cytokine-mediated phosphorylation of MITF and STAT3 is involved in the in vivo int...

متن کامل

TFAP2 paralogs regulate melanocyte differentiation in parallel with MITF

Mutations in the gene encoding transcription factor TFAP2A result in pigmentation anomalies in model organisms and premature hair graying in humans. However, the pleiotropic functions of TFAP2A and its redundantly-acting paralogs have made the precise contribution of TFAP2-type activity to melanocyte differentiation unclear. Defining this contribution may help to explain why TFAP2A expression i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Frontiers in neuroanatomy

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015